Book : Cell Biology
posted by
Posted by: CHELSEA
posted by
Writer CHELSEA

Cell Junction

image about


A cell junction (or intercellular bridge) is a type of structure that exists within the tissue of some multicellular organisms, such as animals. Cell junctions consist of multiprotein complexes that provide contact between neighboring cells or between a cell and the extracellular matrix. They also build up the paracellular barrier of epithelia and control the paracellular transport. Cell junctions are especially abundant in epithelial tissues.

Cell junctions are especially important in enabling communication between neighboring cells via specialized proteins called communicating junctions. Cell junctions are also important in reducing stress placed upon cells.

In vertebrates, there are three major types of cell junction:

  • Adherens junctions, desmosomes and hemidesmosomes (anchoring junctions)
  • Gap junctions (communicating junction)
  • Tight junctions (occluding junctions)

Invertebrates have several other types of specific junctions, for example septate junctions or the C. elegans apical junction.

In multicellular plants, the structural functions of cell junctions are instead provided for by cell walls. The analogues of communicative cell junctions in plants are called plasmodesmata.

Anchoring junctions

Cells within tissues and organs must be anchored to one another and attached to components of the extracellular matrix. Cells have developed several types of junctional complexes to serve these functions, and in each case, anchoring proteins extend through the plasma membrane to link cytoskeletal proteins in one cell to cytoskeletal proteins in neighboring cells as well as to proteins in the extracellular matrix. Anchoring-type junctions not only hold cells together but provide tissues with structural cohesion. These junctions are most abundant in tissues that are subject to constant mechanical stress such as skin and heart.

Desmosomes

Desmosomes, also termed as maculae adherentes, can be visualized as rivets through the plasma membrane of adjacent cells. Intermediate filaments composed of keratin or desmin are attached to membrane-associated attachment proteins that form a dense plaque on the cytoplasmic face of the membrane. Cadherin molecules form the actual anchor by attaching to the cytoplasmic plaque, extending through the membrane and binding strongly to cadherins coming through the membrane of the adjacent cell.

Hemidesmosomes

Hemidesmosomes form rivet-like links between cytoskeleton and extracellular matrix components such as the basal laminae that underlie epithelia. Like desmosomes, they tie to intermediate filaments in the cytoplasm, but in contrast to desmosomes, their transmembrane anchors are integrins rather than cadherins.

Adherens Junctions

Adherens junctions share the characteristic of anchoring cells through their cytoplasmic actin filaments. Similarly to desmosomes and hemidesmosomes, their transmembrane anchors are composed of cadherins in those that anchor to other cells and integrins in those that anchor to extracellular matrix. There is considerable morphologic diversity among adherens junctions. Those that tie cells to one another are seen as isolated streaks or spots, or as bands that completely encircle the cell. The band-type of adherens junctions is associated with bundles of actin filaments that also encircle the cell just below the plasma membrane. Spot-like adherens junctions help cells adhere to extracellular matrix both in vivo and in vitro where they are called focal adhesions. The cytoskeletal actin filaments that tie into adherens junctions are contractile proteins and in addition to providing an anchoring function, adherens junctions are thought to participate in folding and bending of epithelial cell sheets. Thinking of the bands of actin filaments as being similar to 'drawstrings' allows one to envision how contraction of the bands within a group of cells would distort the sheet into interesting patterns.

Communicating (GAP) junctions

Communicating junctions, or gap junctions allow for direct chemical communication between adjacent cellular cytoplasm through diffusion without contact with the extracellular fluid. This is possible due to six connexin proteins interacting to form a cylinder with a pore in the centre called a connexon. The connexon complexes stretches across the cell membrane and when two adjacent cell connexons interact, they form a complete gap junction channel. Connexon pores vary in size, polarity and therefore can be specific depending on the connexin proteins that constitute each individual connexon. Whilst variation in gap junction channels do occur, their structure remains relatively standard, and this interaction ensures efficient communication without the escape of molecules or ions to the extracellular fluid.

Gap junctions play vital roles in the human body, including their role in the uniform contractile of the heart muscle. They are also relevant in signal transfers in the brain, and their absence shows a decreased cell density in the brain. Retinal and skin cells are also dependent on gap junctions in cell differentiation and proliferation.

Tight junctions

Found in vertebrate epithelia, tight junctions act as barriers that regulate the movement of water and solutes between epithelial layers. Tight junctions are classified as a paracellular barrier which is defined as not having directional discrimination; however, movement of the solute is largely dependent upon size and charge. There is evidence to suggest that the structures in which solutes pass through are somewhat like pores.

Physiological pH plays a part in the selectivity of solutes passing through tight junctions with most tight junctions being slightly selective for cations. Tight junctions present in different types of epithelia are selective for solutes of differing size, charge, and polarity.

Tricellular junctions (TCJ)

Tricellular junctions (TCJ) seal epithelia at the corners of three cells. Due to the geometry of three-cell vertices, the sealing of the cells at these sites requires a specific junctional organization, different from bicellular junctions. In vertebrates, TCJs components are Tricellulin and lipolysis-stimulated lipoprotein receptors. In invertebrates TCJs components are Gliotactin and Anaconda.



related articles

Centrosome

Centrosome

  • Basics
  • posted Date:2017 Sep, 09

In cell biology, the centrosome is an organelle that serves as the main microtubule organizing center (MTOC) of...

read more
Cell Nucleus

Cell Nucleus

  • Basics
  • posted Date:2017 Sep, 09

The nucleus is a highly specialized organelle that serves as the information processing and administrative cent...

read more
Centriole

Centriole

  • Basics
  • posted Date:2017 Sep, 09

In cell biology a centriole is a cylindrical cell structure composed mainly of a protein called tubulin that is found...

read more

Subscribe With Us For Daily Reading Lesson Materials